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Abstract
The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in
recent years. The BMolecular Imaging in Nanotechnology and Theranostics^ (MINT) Interest
Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more
organized and focused forum on these topics within the WMIS and at the World Molecular
Imaging Conference (WMIC). The interest group was founded in 2015 and was officially
inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many
scientists who work on molecular imaging approaches using nanotechnology and those that
work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are
very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of
materials and approaches that drive these fields. In this short review, we attempt to provide a
condensed overview over some of the key areas covered by MINT. Given the breadth of the
fields and the given space constraints, we have limited the coverage to the realm of
nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus
only on the most recent developments of the last 3–5 years, in order to provide the reader with
an intuition of what is Bin the pipeline^ and has potential for clinical translation in the near future.
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Introduction
With unique properties endowed by their size, modular
structure, and functionalization abilities, biomedical nanoparti-
cles are being unremittingly developed and used in biomedicine.
In medical imaging, they serve as contrast agents—detectable
with multiple modalities simultaneously—and give rise to new
techniques for the ever-richer acquisition of molecular informa-
tion. Some are already employed clinically as therapeutics, or
delivery vehicles for pharmaceuticals, since they serve to reduce
systemic side effects [1]. Targeted drug and gene delivery

strategies and stimuli-responsive nanoparticle therapies are in
clinical trials [2]. Modular and versatile, unifying imaging with
therapy, nanoparticles are becoming true theranostic agents.

Compared to small molecules, nanoparticles feature
notable advantages as theranostic agents, summarized in
Fig. 1: (1) their modular structure and surface modifications
enable multiple functionalities (decreased immunogenicity,
targeting, multimodal imaging, therapy, and controlled
pharmacokinetics); (2) specific tissues can be targeted
passively (e.g., reticuloendothelial system or kidneys), as
can many tumors through the Benhanced permeability and
retention^ (EPR) effect; (3) nanoparticles can respond to
their microenvironment or to external stimuli to provide
therapy and contrast only where needed [3]; and (4) differentCorrespondence to: Moritz Kircher; e-mail: kircherm@mskcc.org
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types of therapy can be elicited by the nanoparticles. These
features render nanoparticles as peerless imaging agents
using traditional medical imaging and enable the develop-
ment of new modalities and theranostic applications. Many
strategies have been reported for creating biomedical
imaging nanoparticles using a variety of materials, and this
has generated a virtual cornucopia of easily obtainable
nanoparticle agents. A non-exhaustive selection of refer-
ences, tabulated by material, imaging modality, and therapy
is presented in Table 1.

Imaging
Among the first nanoparticle constructs to allow molecular
imaging were superparamagnetic iron oxide nanoparticles
(SPIONs), used for contrast generation with magnetic
resonance imaging (MRI) [4, 5]. The current emphasis lies
on their clinical translation, especially given the renaissance
spurred by ferumoxytol, which is now FDA-approved for
systemic injection as an iron replacement therapy (trade
name Feraheme). As a member of the family of ultrasmall
superparamagnetic iron oxide nanoparticles (USPIOs),
ferumoxytol causes regional T1 and T2* shortening
in vivo, leading to signal enhancement or loss on conven-
tional MR pulse sequences [6]. Ferumoxytol has shown
promise in diverse areas such as noninvasive identification
of type 1 diabetes [7], determining the severity of neurolog-
ical diseases [8], imaging of tumor-associated macrophages
(TAMs) [9], cell tracking [10], or whole-body cancer staging
[11]. A recent and very exciting discovery was the finding
that ferumoxytol may have an intrinsic, anticancer

therapeutic effect: intravenous ferumoxytol administration
was shown to prevent metastases to the liver. This
phenomenon is thought to be due to pro-inflammatory
macrophage (M1) polarization in tumor tissues [12]. Such
discoveries bear the hope that other nanoparticle agents may
also harbor such unexpected theranostic effects.

Positron emission tomography (PET) and single-photon
emission computed tomography (SPECT) are noninvasive
imaging modalities frequently used in clinical settings for
oncology, neuroscience, cardiology, etc. [13, 14] using
radioactive nuclides conjugated to small molecules, e.g., 2-
deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) or antibodies.
Recently, nanoparticles labeled with radiotracers were found
to be very promising—particularly in cancer imaging—in
preclinical studies because of three major advantages: (1) the
EPR effect; (2) high surface-to-volume ratio of the nanopar-
ticles allowing high density radiolabeling either using
chelators (such as DOTA), chelator-free strategies, or
intrinsic labeling during synthesis [15]; and (3) complemen-
tary multimodal imaging. Many different radionuclide–
nanoparticle combinations have been reported; but smaller,
rapidly clearable nanoparticles with fast decaying radiolabels
are ideal for potential clinical translation. Nanoparticles with
Cu-64 (t1/2 = 12.7 h) were shown to allow in vivo imaging
up to 48 h [16–21]. Ultra-small chelator-free renally
clearable Cu-64-labeled Cu nanoclusters were reported for
imaging in orthotopic lung cancer mouse models [22]. In
another study, Cu-64-based liposomes were used to assess
the EPR effect in canine cancer models, suggesting high
inter-tumoral heterogeneity of EPR-based uptake [23]. Other
radioisotope–nanoparticle combinations have been
employed for different imaging purposes, including Ga-68
(t1/2 = 68 min), Zr-89 (t1/2 = 3.3 days), In-111 (t1/2 = 2.8 days),
and Au-198 (t1/2 = 2.69 days) [24–30]. Recently, Zr-89 was
used to label soft, polymeric, and lipoprotein nanoparticles
for imaging of macrophages in atherosclerotic plaques and
tumors [31–33]. Important steps towards clinical translation
of PET nanoparticles are being carried out using C-dots
(BCornell dots^) labeled with I-124 (t1/2 = 4.18 days),
showing excellent localization and no toxicity in metastatic
melanoma patients [34, 35].

Fluorescent nanoparticles (FNPs), with intrinsic fluores-
cence or loaded with fluorescent dyes, are being investigated
as imaging agents due to their advantages over small
molecule dyes, namely, improved specificity (by active or
passive targeting [36, 37]), increased circulation time (by
evading immune detection and renal clearance), and smart
activation (by pH dependency or enzymatic activity) as well
as increased signal intensity [36, 38]. FNPs have been
reportedly used for sentinel lymph node (SLN) and solid
tumor detection, image-guided tumor surgery with real-time
feedback, and monitoring of drug delivery [36, 39]. Also,
fluorescent quantum dots and gold nanoparticles (passivated
with polyethylene glycol (PEG) or silica) [36, 39] can be
combined with complementary imaging agents like gadolin-
ium [39, 40], organic dyes [39], polymeric dots [39, 41], or

Fig. 1. Through their modular structure, nanoparticles can
incur specific biologic interactions and deliver targeted
therapy using intrinsic or external stimuli.
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fluorescent proteins [39, 42, 43]. Quantum dots are of
particular interest due to their broad absorption and size-
tunable emission spectra, making them suitable for
multiplexing [37, 44] and less susceptible to photobleaching
compared to broadly used organic dyes [37].

A new generation of fluorogens has been introduced to
bioimaging with FNPs, exhibiting aggregation-induced
emission (AIE) [45]. AIE overcomes aggregation-induced
quenching and allows for higher concentration of fluorogens
on the NP while also reducing photobleaching [45].
However, due to the fluorogens’ broad emission spectra, it
is less suitable for multiplexing, instigating some groups to
work on narrowing the emission spectra via Förster
resonance energy transfer [46]. Although fluorescence
imaging is complicated by high false-positive rates [47],
improvements in specificity have been reported, leading to
higher levels of complete tumor resection [48].

Raman imaging—a spectroscopic optical imaging
technique—with surface enhanced (resonance) Raman scat-
tering nanoparticles (SERS NPs) shows much potential for
in vivo imaging of cancer [49]. Unlike fluorescent
agents, SERS NPs do not suffer from significant background
from endogenous molecules or photobleaching [50]. In
fact, the endogenous Raman signals can be used to
generate surface topology on which the specific signals can

be mapped without interference [51]. With their low
detection threshold and high signal specificity, SERS NPs
were shown to delineate tumors—and even premalignant
lesions—passively through the EPR effect [52]. Nanoparti-
cle sequestration by the RES allows for imaging of SLNs
[53] and tumors in the liver and spleen [50]. SERS NPs
were reported to delineate tumors preoperatively and
intraoperatively [54], as well as detecting microscopic
tumors and metastatic foci in glioblastoma, ovarian cancer,
and lung metastases [55–59]. Given their potential signifi-
cance in tumor imaging and nontoxic composition, the
timely translation of SERS NPs into the clinic could
represent a fundamental improvement in patient morbidity
and mortality.

Nanoparticles can be engineered to allow Bhybrid^
imaging methods, where excitation and detection occur
through distinct physical processes. For example, in photo-
acoustic imaging (PAI), pulses of light excite the contrast
agent, which in turn produces a mechanical response,
detected as ultrasound [60]. Images are obtained noninva-
sively, deeper within tissues and with higher spatial
resolution compared to purely optical imaging techniques.
Nanoparticles based on plasmonic [61–66], polymeric [67–
72], and other materials [73–87] have all shown great
potential in preclinical studies, combining photoacoustic
detection with photothermal and photodynamic therapies
(PTT and PDT). However, nanoparticles based on iron oxide
[88–90] or silica [91] have a higher likelihood for clinical
translation as similar materials are already approved for use
in humans. Magnetically actuated photoacoustically active
nanoparticles are of particular interest, as they allow more
specific detection through magnetic actuation [92].

Some charged particles produced by radionuclide decay
emit visible light, referred to as Cerenkov luminescence
(CL) [93], already demonstrated for cancer imaging in
humans using [18F]FDG [94]. Nanoparticle-based agents
bring new potential to this emerging modality, allowing for
more specific imaging [95–97] and therapy [98–100], while
active or passive targeting [101] can map receptors [102] or
enzymes [103] of interest. As nanoparticles for PET imaging
are translated to the clinic, CL may provide additional,
complementary information to the benefit of the patient.

Therapy
Nanoparticles have great potential as therapeutic agents,
delivering drugs, genes, or other forms of therapy, with
many examples of clinical success [1]. In the paradigm set
by Doxil, nanoparticles can be engineered to encapsulate
pharmaceuticals (such as doxorubicin (DOX)) and release
them at targeted sites, reducing systemic toxicity and
improving pharmacokinetic profiles. In a newer scheme,
DOX-conjugated poly(lactic-co-glycolic acid) (PLGA) was
loaded into an injectable nanoparticle generator spontane-
ously releasing nanoparticles upon pH stimulation, which
are later cleaved into DOX within the cell to avoid drug

Fig. 2. Nanoparticles of different materials, with many
applications available at our fingertips.
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efflux pumps, showing enhanced efficacy in metastatic
breast cancer models over free DOX [104]. Ultrasmall
[64Cu]-PEG-melanin nanoparticles loaded with FDA-
approved multikinase inhibitor sorafenib provide PET-PAI
image-guided chemotherapy in liver xenograft models [105].
Recently, siRNA-loaded nanoparticles were employed in
various settings, such as gene delivery into lung cancer
cells—but not normal cells—without targeting ligands [106],
transdermal application for suppressing EGFR expression
and downstream ERK signaling in mice and humans with no
clinical or histological toxicity [107], and increasing
progression-free survival in murine acute kidney injury
models and nonhuman primates [108].

PTT employs heat to destroy cancer cells and
nanomedicine can substantially facilitate this process.
AuroShell is the first demonstrated exogenous vis–NIR
light-absorbing nanoparticle for photothermal tumor
ablation and optical coherence tomography (OCT) [109]
and was extensively investigated in murine and canine
models of various cancer types [110–112]. Pilot clinical
studies are being conducted in head and neck cancer
(NCT00848042), lung cancer (NCT01679470), and pros-
tate cancer (NCT02680535). Gold nanoparticles with
radiofrequency waves can also induce PTT [113, 114].
For PDT therapy, Cerenkov luminescence can activate
transferrin-coated TiO2 photosensitizer nanoparticles and
mediate tumor remission by generating free radicals and
immune cell infiltration [115]. NIR PDT is achievable
using photosensitizing silica-coated upconversion nano-
particles for deeper tissue penetration than visible light
[116]. Aminosilane-coated iron oxide (NanoTherm), sig-
nificantly polarized under external magnetic fields to
selectively ablate tumors by heat generation, is undergo-
ing clinical trials in the USA [117–119]. FDA-approved
SPIONs were also found to inhibit tumor growth by
hyperthermia under magnetic fields at preclinical levels
[120–122]. Such integration of multiple functions and
modalities is a unique characteristic of nanoparticles that
will make them invaluable for detection and therapy in a
wide variety of diseases.

Ultrasound (US) can promote nanoparticle accumulation
and drug release in tumors through cavitation and is reported
to mediate nanoparticles crossing even intact blood–brain
barriers [123]—see mini-review on US molecular imaging
by Caskey in this issue. Nanoparticles as a sonoporation
enhancer are advantageous over microbubbles (MBs) for
their extravasation in capillaries and sustained activity. PEG-
PDLA nanoparticles were used to overcome aqueous
solubility barriers of paclitaxel under US guidance [124].
Polymer nanoparticle-stabilized MBs with embedded
SPIONs provide MRI/US imaging and pulse-activated
nanoparticle release [125]. Gas-generating docetaxel (DTX)
and Cy5.5 dye-loaded polymeric nanoparticles in MBs offer
fluorescence/US signal and are released at tumor sites upon
ultrasound irradiation through bubble burst, with much
higher contrast than clinically used Sonovue® and

Definity® and higher therapeutic effects than free DTX or
without US activation [126].

Nanoparticles can also elicit immunotherapy. Besides the
aforementioned hyperthermia effects, SPIONs were recently
found to intrinsically inhibit tumor growth as a potential
macrophage-modulating immunotherapy [12]. Adjuvant
drug labeled liposome- and lipid-based nanoparticles cova-
lently attached to cell surface for adoptive T cell therapy can
markedly decrease tumor burden at preclinical setups [127].
PEG-PLGA nanoparticles encapsulated with indocyanine
green (ICG) and TLR7 agonist R837 can generate tumor-
associated antigens during PTT, and its combination therapy
with anti-CTLA4 antibodies significantly inhibited metasta-
sis in a 4T1 orthotopic model [128]. Carbon nanotube-
PLGA nanocomplexes with high surface area were func-
tionalized with T cell stimulating antigens for delivery of IL-
2 at a dose much lower than clinically used to overcome
adverse reactions. These nanocomplexes generate a large
number of cytotoxic T cells and delay tumor growth in
murine melanoma models [129].

PET-based nanoparticles are being perused as an
alternative to traditional internal radiotherapy or brachy-
therapy as they allow even distribution within the tumor
volume. Alpha emitters with long half-life like Ac-225
(t1/2 = 10 days) are the preferred radionuclides for the
formulation of radiotherapeutic nanoparticles [130, 131].
However, there is concern about the radioactivity of
downstream decay processes. Recently, I-131 (t1/2 = 8 days),
often used for the treatment of thyroid cancer, has been
integrated with iron oxide nanoparticles and polymeric
nanoparticles for targeted therapy of hepatocellular carci-
noma in mouse models [132, 133]. Lu-177 (t1/2 = 6.6 days)
has been utilized in lipid-calcium phosphate nanoparticles
showing significant growth inhibition in subcutaneous
xenograft tumor models [134]. There is also great deal of
interest in using a nonradioactive module as a therapeutic
partner in the formulation of PET nanoparticles. In a recent
study, a Tc-99m-labeled (t1/2 = 6 h), folic acid-targeted,
multiwalled CNT nanoprobe has been developed using
methotrexate as a therapeutic module showing an augmen-
tation of the therapeutic efficacy of the drug in the
presence of Tc-99m [135].

Metal nanoparticles can act as radiosensitizers, enhanc-
ing the efficacy of radiotherapy, e.g., renally clearable
ultrasmall gold nanoclusters with high tumor uptake
[136], or polymeric nanoparticles loaded with gold
nanoparticles [137]. Gold nanoparticles in glioma models
boosted overall survival in mice [138], as well as in head
and neck cancer models [139], while silver nanoparticles
produced similar results in glioma-bearing rats [140].
Therapeutic Pd-103–Au nanoseeds offer SPECT signal
along with a radiotherapeutic effect of 980% tumor
shrinkage [141]. I-131-doped CuS nanoparticles provide
combined PTT and radiotherapy together with CT and
gamma image guidance to treat 4T1 subcutaneous and
metastatic tumors [142].
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Future Directions
Nanoparticles are quickly becoming universal imaging agents,
takingmultimodal imaging to new heights [143, 144]. Soon, with
advances in synthesis and standardization, the use of nanoparticle
agents will become ubiquitous, seamless, and personalizable (see
Fig. 2). Multiple treatments can be packaged within the same
nanoparticle agent, for example, a prophylactic hydrogel patch
containing fluorescently labeled targeted gold nanoparticles
locally implanted into a tumor makes a triple combination
therapy of siRNA against Kras, VEGF inhibitor delivery, and
PTT available at the same time for colon cancer treatments [145].
Monitoring the nanoparticle distribution in the body, but also the
therapeutic load delivery via imaging, is possible, for example via
MRI [146, 147]. The next crucial step will be predicting their
distribution even before administration, especially given the high
variability of the EPR effect. Such prediction may take the form
of Bcompanion nanoparticles^ [148] or computational models
[149]. Bioderived nanoparticles, synthesized using Bgreen
chemistry^ or cells [150–152], can expand the limits of
biocompatibility and immune evasion through biomimicry
[153]. Such biocompatible synthesis approaches could soon
enable chemical manipulation of nanoparticles in vivo [154]. As
nanoparticles transition to the clinic, they are investigated more
deeply and new effects are discovered. For example, besides their
role in intraoperative image-guided oncosurgeries, C-dots were
recently observed to induce ferroptosis of cancer cells both
in vitro and in vivo [155], and iron oxide nanoparticles were
shown to reprogram TAMs to attack tumors [12].

Conclusion
With many examples of successful nanoparticle theranostic
agents already employed clinically, several undergoing clinical
trials, and countless others emerging from preclinical studies, we
are ushering in the era of nanomedicine. Smart, specific, and
customizable, theranostic nanoparticles will soon—pending
FDA approval—detect, treat, and prevent disease. MINT has
been established to create a forum to discuss these advances and
better integrate disciplines that develop and use nanoparticles for
imaging and therapy.
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